Botswana Mozambique South Africa Zimbabwe
About Tutorial Glossary Documents Images Maps Google Earth
Please provide feedback! Click for details
Home The River Basin People and the River Governance Resource Management
The Limpopo River Basin
 Introduction
Geography
Climate and Weather
Hydrology
Water Quality
 Principles of Water Quality
 Human Impacts to Water Quality
 Groundwater
 Agricultural Impacts
 Industry and Mining
Salinity
 Hardness
 Microbiological
 Heavy Metals
 Persistent Organic Pollutants
 Water Temperature
 Radio-nuclides
 Case Study: Upper Olifants River
 Water Quality Fitness for Use
Ecology and Biodiversity
Sub-basin Summaries
 References

 

Water Quality: Salinity  

Salinity refers to the saltiness of water caused by the dissolution of minerals in rocks, soils and decomposing plant material. The level of salinity in a river, for instance, depends on the geological and climatic environments through which the river flows. Salinity increases downstream, as salts are continuously added through natural and anthropogenic processes such as mining, industry and agriculture, but are only minimally removed through technological interventions or diluted by precipitation (du Preez et al. 2000).

High levels of salinity can lead to the "salinisation of irrigated soils, diminished crop yields, increased scale formation and corrosion in domestic and industrial water pipes, and changes in the biotic communities." 1 000 mg/L is considered moderate salinity and is generally tolerated by humans; however, at levels above 3 000 mg/L (high salinity) fatal intestinal damage and renal damage can occur (DEAT 2009).

Salt can accumulate on the surface as a crust, or in soil, when evapotranspiration exceeds precipitation.
Source: Reed 2009
( click to enlarge )

Water quality in all reaches of the Limpopo River in Botswana and South Africa is dominated by high levels of sodium and chloride (LBPTC 2010).  Although naturally occurring geological characteristics contribute to salinity to some extent, poorly managed irrigation systems are the primary cause of high levels of soil and water salinity in the basin. Large-scale commercial irrigation systems utilise equipment and systems to manage salinity; however, smaller scale operations do not have access to this sophisticated equipment (FAO 2004) and as a result up to 10 % of soils in South Africa are saline.  

 



Interactive

Explore the sub-basins of the Limpopo River


Explore the interactions of living organisms in aquatic environments


Examine how the hydrologic cycle moves water through and around the earth


Tour video scenes along the Limpopo related to The River Basin Theme